《两位数加两位数口算》教学反思(精选10篇)

时间:2024-10-03 20:05:22 | 作者:无名

《两位数加两位数口算》教学反思(精选10篇)

  随着社会不断地进步,我们都希望有一流的课堂教学能力,反思自己,必须要让自己抽身出来看事件或者场景,看一段历程当中的自己。那么大家知道正规的反思怎么写吗?下面是小编收集整理的《两位数加两位数口算》教学反思,欢迎大家分享。

  《两位数加两位数口算》教学反思 1

  两位数加两位数的口算,是在学生已经能够熟练口算20以内的加、减法,并能正确笔算三位数加、减三位数的基础上教学的,所用的口算思路可以是两位数加两位数的笔算,也可以是两位数加整十数再加一位数。

  由于学生脑海中对笔算的思路比较熟悉,所以本课首先要帮助学生跳出单一的笔算思路,激活学生潜意识中两位数加整十数口算的那根弦,打开口算的思路便成为上好本课的关键之一。为此,我设计时充分运用迁移规律,在出示例题口算43+21前,有意复习口算43+20,让学生在43+21与43+20的比较中,把学生口算两位数加整十数相关经验充分激活,同时把这样的方法迁移到口算43+21中。

  但从本节课的实施情况与设计预案存在着一定的距离。本堂课的原意是让学生在已经能笔算“两位数加两位数”的基础上,掌握一种新的口算方法,即把口算“两位数加两位数”看做“两位数加整十数”“两位数加一位数”两种情况的组合,并且在口算过程中体会其优越性,能很好地掌握并使用这一方法。但教学下来,学生似乎对这一新方法并不感兴趣,仍然执著地使用笔算这一方法,哪怕我在课前已预料到这种情况的发生,因此在新方法上花了相对较多的时间。或许笔算的方法在学生头脑中已根深蒂固,大家已习惯于通过这样的方法来计算。

  本节课在体现算法多样的同时,最大的目的`是让学生理解和掌握一种新的口算方法,逐步提升数学思维水平,但理解和掌握一种新的算法并非轻而易举的事。在教学中,我让学生“用喜欢的方法算”,充分尊重学生的选择,以为学生凭一已之力很难达到算法的多样化,显然高估了学生的能力。

  一个三年级的学生往往感性地认为自己熟悉的、已掌握的算法是最好的,并喜欢使用这些方法计算。看来,预设再充分,也绝不可能考虑到教学生成的全部内容,因此,老师要努力提高自己的教学应变能力,培养教学机智,能迅速、灵活、高效地判断和处理教学过程中的各种信息,引领学生的思维。

  《两位数加两位数口算》教学反思 2

  两位数加两位数的口算,这部分内容是在学生学习了100以内两位数加减一位数、整十数,两位数加减两位数笔算的基础上进行的。主要教学和在100以内的两位数加两位数的口算。同时,引导学生在练习中由需要进位的整十数加整十数的口算类推出相应的整百数加整百数的口算。还适当要求学生掌握两位数加两位数的估算方法。

  由于学生有笔算的基础和丰富的经验,学生对于笔算有很大的依赖性。如果引入新课后直接出示例题进行教学,绝大多数学生都会选择用笔算的方法进行计算,想不到用简便的方法直接口算,这样就完全失去了本课的意义。于是我在教学新知前设计了练习在其中渗透100以内两位数加一位数、整十数的口算,为学生探索两位数加两位数的口算做好铺垫。在设计这些练习时,我希望学生能从100以内两位数加一位数、整十数的口算中探索出两位数加两位数的口算方法。

  在探索口算方法的教学中,我充分发挥了学生的主体作用,采用了独立思考、小组讨论交流的方式,让学生在互动交流,学生间的引领,找出不同解决的方法。既要求学生积极参与活动,充分发表自己的.意见,取长补短,发挥学生集体的智慧,在相互补充中得到最佳的方案。在分组交流时,尽量让学生来交流总结,并适时进行引导。

  本课练习的设计紧扣重点、难点,在探索两位数加两位数的口算方法后,又设计了一系列的巩固练习,活跃了学生的思维,巩固了口算方法,深入挖掘教材自身资源,创造性地使用教材。在下面的练习中,先通过对比题、小游戏、编口算等进行基本训练,分清进位与不进位两种情况,提高口算正确率,打开了学生的思维,再运用所学知识去解决一些生活实际问题,运用数学。

  由于设计的内容很充实,课上给学生充分的时间去探究发现、讨论方法用掉了太多的时间,使得最后一个环节未完成的时候下课铃已经响了,所以上课还需更紧凑一些。还有一点是,课堂上的语言不够精炼,不能做到一针进血,在讲解口算方法的时候有点啰嗦,不够简洁。为此,今后要多多学习,争取更大的进步!

  《两位数加两位数口算》教学反思 3

  “重视口算,加强估算,提倡算法多样化”是新课程的主要理念之一,新教材又把数的计算教学与解决问题有机的结合在一起。本节课的教学想通过对教材的充分利用和深入挖掘,依据学生的认知水平,创设探索性和开放性的情境,让学生在体验算法多样化的`基础上体验解决问题策略的多样化,主要体现在以下两方面:

  1、注重已有经验,体验“多样化”

  提倡和鼓励算法多样化,是数学新课程倡导的主要理念之一,而解决问题策略的多样化更是实现学生学习个性化的重要途径。本节课注重引导学生从这两方面入手,让学生充分体验方法“多样化”:在学生交流不同口算方法的过程中,及时肯定、鼓励学生的不同想法,引导学生在比较中选择适合自己的算法,实现学生学习的个性化;通过对教材的再度开发和深入挖掘,让学生在解决“乘船问题”中,对“估一估,一艘船做得下吗?”“大约需要几条船?”“两个班坐一条船,可以怎么安排?”这几个问题的探讨,充分体验解决问题策略的多样化。

  2、重视比较归纳,实现“优化”

  方法是多样的,但也有“巧”方法和“笨”方法之分。在提倡和鼓励口算方法多样化和解决问题策略多样化的同时,更应该让学生通过对各种方法进行分析、讨论、比较、归纳,吸取各种方法中的精华,悟出最佳方法;在体验解决问题策略多样化的过程中,更应引导学生联系生活实际,选择最合理,最优化的方案。

  《两位数加两位数口算》教学反思 4

  本课内容是在学生掌握了用竖式计算两位数加两位数的基础上进行教学的,主要教学两位数加两位数的口算,提高学生的口算能力。

  在新课内容之前,我先组织学生复习了两位数加整十数、两位数加一位数的不进位加以及进位加。学生通过口算、交流计算方法、比较三组口算的异同,唤醒已有的口算经验,为新知的学习做好准备。

  在新知的教学上,我通过创设学生熟悉的跳绳场景,在生活情境中使学生经历提出数学问题——列出算式——探究算法——巩固算法的过程。其中探究算法这一部分,我们先研究不进位加法,我通过组织学生小组活动,让学生充分阐述自己的算法,在交流中不自觉的对算法进行比较,一方面使学生感受算法的多样化,另一方面寻找最优化算法。在此基础上,组织全班交流,使学生明确不管是哪一种算法都是把2个十加在十位,把3个一加在个位,从而提炼出两位数加两位数口算方法:先加几十,再加几。在学生有了不进位加法的计算经验之后,组织学生独立思考进位加的方法,实现了知识的迁移,对学生而言,也是一种能力的提升。

  在练习方面,我调整了书上安排的练习,将练习分为三个层次:基础练习、综合练习和拓展练习。基础练习安排了口算以及估数,一方面提升数感,另一方面也能提高口算的熟练程度和正确率。综合练习安排了书本想想做做第四题,再安排了两个变式。一个是已知四年级男生32人,女生4□,总人数8□,求女生人数。另一个是已知五年级男生32人,女生4□,总人数7□,求女生人数。这题的设计重在培养学生思维的灵活性,活用不进位加和进位加的特点。考虑到例题的教学已经有了提出问题,解决问题的`过程,因此将拓展练习改为从1、2、3、4、5中选出四个数,组成一道两位数加两位数的加法算式,使得和最小。

  回顾本课的教学,我觉得还可做如下改进。

  在教学不进位加,学生得出多种算法,比较这些算法,选择最喜欢的算法时,有学生会根据前面竖式计算的经验,觉得先算个位,再算十位的方法更简便。但这就与本课重点教学的方法不太符合,因此就要去引导学生体会到先算几十,再算几这种方法的优势。通过对这几种方法的比较,学生会发现这些算法的原理其实是一样的,不过第三种方法只要两步就能准确算出得数,其他的方法都要三步,这将大大提高我们计算的速度,因此还是第三种方法最好。

  在练习第一题,找三道算式的联系时,可将问题缩小,再让学生讨论。如在学生观察出第二题和第三题的得数相同之后,可问:那第一题和第二题之间有没有联系?当学生发现:第一题的得数正好是第二题的第一个加数后,追问:哪一题才是我们今天学的新本领?第三题和前两题之间有关系吗?通过引导,将问题范围一步步缩小,学生思考的目标更明确,更容易得出:前两题就是第三题的计算过程,算第三题时,只要想前面两道口算。

  通过这节课的教学,我发现自己还有很多需要改进的地方,今后我将继续努力。

  《两位数加两位数口算》教学反思 5

  一、创设情境,充分调动学生学习的积极性

  在教学时,创设适合的情境对于激发学生的学习兴趣是十分重要的,好的情境能让学生尽快地融入到教学中来。因此,我创设两位小朋友买玩具的情景,既让学生感受到了数学与生活的联系,又激发了学生的.兴趣。

  二、注重交流,发挥学生的集体智慧

  交流是学生的天性,学生总愿意把自己知道的与别人一起分享。在教学时,我让学生先自己想一想,然后小组交流,说说自己的口算方法。取长补短,发挥学生集体的智慧,在相互交流中找出适合自己的方法。

  三、巩固练习,提高学生的口算能力

  本课练习的设计紧扣重点、难点,在探索两位数加两位数的口算方法后,又设计了一系列的巩固练习,活跃了学生的思维,巩固了口算方法,深入挖掘教材自身资源,创造性地使用教材。在下面的练习中,先通过对比练习题分清进位与不进位两种情况,提高口算正确率,打开了学生的思维,再运用所学知识去解决一些生活实际问题,运用数学。

  不足与改进:

  针对本节课的教学设计,并结合教学时的实际教学情况,我从以下几个方面进行了反思:

  一、本节课我对学生回答问题时的评价不太到位,应多给一些鼓励性的语言,激发学生学习的积极性。

  二、学生说出两位数加两位数的口算方法后,说的不到位的应教师给予补充,使学生掌握更多的口算方法。

  三、学生不善于利用估算来对口算结果进行检验,口算两位数加两位数的错误主要在口算进位加法时,会将个位向十位的进一忘记加,是学生出现的主要错误,如果引导学生将估计与精算结合起来,将会有效地提高口算的正确率。而且我发现学生在解决实际问题时,重视精算,忽略估算。学生总是习惯以精算结果去解题。只有当题目提出明确要求要“估一估”时,学生才会以估算的方法去尝试解决问题。不难看出,学生欠缺的是估算意识,一种能根据实际情境灵活选择算法的能力。

  《两位数加两位数口算》教学反思 6

  在实施新课程改革之前的漫长岁月中,口算教学所追求的目标是:能正确、迅速地口算,掌握一定的速算技巧,具备一定的口算能力。而评价的标准也很简单,即检验一个学生的口算能力就是看他一分钟时间内能口算多少道题。学生只是机械地按照老师所传授地方法进行口算,老师并没有真正让学生尝试用自己的方法来计算。而算法多样化却能很好地解决鼓励学生独立思考、尝试用自己的方法计算的问题。

  诚然,算法多样化是近年来小学数学教学改革中最易引起争议的焦点问题。而算法多样化是《数学课程标准》所倡导的教学理念,按照这样的教学,不仅有利于培养学生独立思考的能力,有利于学生进行数学交流,而且有利于因材施教,发掘每个学生的潜能。这样的教学不但使得每个学生都有成功的愉悦,而且能使不同的学生学到不同的数学。

  《小学数学课程标准》明确指出,加强估算,鼓励算法多样化。由于学生生活背景和思考角度不同,所使用的方法必然是多样的,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。如对于计算23+31的问题,学生可以采取多种方法,以下列举的方法都应当受到鼓励。

  教师不要急于评价各种算法,应引导学生通过比较各种算法的特点,选择适合于自己的方法。又如,解决“在开家长会时,每张长凳最多坐5人,33位家长至少需要准备几张长凳”这个问题时,学生的思考方法可能是多样的。有的学生借助学具,用小棒代表长凳,用圆片代表家长,在操作中得出至少应准备7张长凳,有的学生通过计算33÷5,判断至少应准备7张长凳;有的学生则用乘法,5×7=35,35>33,而5×6=3030<33,因此至少要准备7张长凳。对于这些方法,教师都应该加以鼓励,并为学生提供交流的机会,使学生在相互交流中不断完善自己的方法。这样不仅可以帮助教师了解不同学生的学习特点,而且有助于促进学生个性的发展。同时,教师应经常要求学生思考这样的问题:你是怎样想的?刚才你是怎么做的?如果……怎么样?出现什么错误了?你认为哪个办法更好?……以此来引导学生思考并交流解决问题的方法。

  下面再以口算万以内数的加减法为例,让我们一道去探索算法多样化对于发掘学生潜能的“神奇功效”吧!

  课件出示题目:小明拿着700元,去买价值250元的自行车和价值470元的MP3,小明的钱够不够?

  学生1:不够,因为470元接近500元,而500+250=750元,所以我断定不够。

  学生2:不够,因为470元接近500元,而500+200=700元,显然700元整是不够的。

  学生3:不够,因为250元接近300元,而300+470=770元,所以700元是不够的。

  学生4:我看差不多,因为470看作500来算时多加了30,所以700元也差不多。

  ……

  主动猜测,多种算法。在教学口算250+470=?时,让学生想办法用已经学过的知识和方法尝试解决问题。提供自主思考学习的机会,给学生充分思考的空间和时间,允许并鼓励他们有不同的想法,尊重他们的想法,哪怕他们的想法是不合理的,甚至是错误的,让他们在相互交流、碰撞、讨论中进一步明确算理。

  下面是一个相关内容的较为成功的教学片段:

  教师:那么到底够不够,你能不能口算出它的准确得数。

  出示算式250+470=?让学生小组讨论怎样口算。

  全班交流总结。

  学生1:因为250+400=650,所以650+70=720

  学生2:因为200+400=600,50+70=120,所以120+600=720

  学生3:因为25+47=72,所以250+470=720

  学生4:250+470=250+500-30=750-30=720

  ……

  验证猜想,探究算法。任何猜想都要经过证明,才能确定其是否具有普遍意义。教师要重视引导学生验证猜想。验证猜想的过程,也就是学生主动参与数学知识探究的过程。促使学生以一个创造者、发明者的身份去探索知识,让学生在体验满足感、成功感的同时,获得一种科学方法的启蒙教育。

  下面是另一个相关内容的较为成功的教学片段:

  教师:你对这些方法有什么不同意见?

  学生:我认为第二种方法比较好,因为他都是整十整百数相加。计算比较简便,比较容易理解。

  学生:我认为第四种比较好,它就象我们平时买东西,先多付30元,然后售货员再找回来,也就是先付250+500=750元,再减去30元,也就是找回30元。

  学生:我认为第三种有点弊端,因为这样做,有时会忘记写0。

  教师:你们提的观点都是非常好的,这些方法也都是正确的,在以后你认为怎样算又快又对就怎样算。

  在《口算两位数加两位数》导学设计中我认为应注意以下几点:

  一、密切联系生活实际,培养估算意识

  新课程标准明确指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的。估算在日常生活中有着十分广泛的`应用,应该培养学生结合具体情境进行估算,并解释估算的过程。在口算时可以先加强学生的估算的练习,这样有助于学生提高学生学习兴趣,提高口算的准确性,促进学生对口算的理解和应用。

  二、重视算法多样化,培养创新意识

  由于学生生活背景和思考角度不同,所使用的方法必然是多样的。面对算式,每个学生都有自己的各自不同的思维方式,无论哪个学生,凡是以自己的学习方式,根据自己的特点,以自己的步调进行学习,都是有效的。学生的学习总是在自己已有知识基础上的自我建构,学生的心灵深处不仅有求异和创新的需要,而且完全有创造的潜力。这样通过一道题的有效学习比训练几张口算卡来得收获更大。

  三、鼓励质疑评价,培养反思意识

  新课程标准指出:要使学生形成评价与反思的意识。对于学生思维成果的评价,并非是老师的专利。因此对学生各种各样的口算方法,教师不要急于评价优劣,应引导学生比较各种算法的特点,并对各种算法进行质疑、剖析。让学生自己来评价,自己来反思。“为什么结果要减去30呢?”“对xx同学的算法,你想发表什么意见?”“还有不同意见吗?”等等,特别是引导学生对各种方法的思路进行比较,让学生进一步思考:同学们用多种方法去口算,尽管大家的思考方法不同,但有一种相同的思路,想一想,这一基本的思路是什么?学生经过思考发现,都是在想方设法“凑整”。如果学生原来的“凑整”是处于无意识状态,那么,通过对自己解决问题过程的反思,就增强了用“凑整”思路来解决实际情境中的各种计算问题的意识。不仅使结论得到进一步的凝练和升华,而且有助于学生建立初步的数学价值观。

  《两位数加两位数口算》教学反思 7

  本节课的教学是在学生已经学习了整十数加整十数的口算、两位数加整十数的口算、两位数加一位数的口算的基础之上进行学习的。因此,新课学习之前我引导学生对整十数加整十数、两位数加整十数、两位数加一位数的口算方法进行了复习。从这节课中的`教学互动和教学效果可以看出新课前的复习对探索口算两位数加两位数的计算方法是非常有帮助的。因而,复习这个环节我认为是设计得非常好的。新课引入时我了解了同学们在课间活动的时候都喜欢参加哪些体育项目,并向同学们介绍小华、小红、小军也非常喜欢参加跳绳这项体育活动,在一次比赛中他们的成绩如下,随即出示课本第59页例1的情境图。创设了生动的教学情景,过渡自然。引导学生观察例1的情境图并说出自己获得的数学信息,培养学生的细心观察能力和数学语言的表达能力,在教学中,这个环节只点名了2名学生发言,根据观课老师们的建议可以再采用一个群答的方式,让同学们充分获取例题中的数学信息。在理解情境图的基础上,让学生提出问题,培养学生的问题意识,根据同学们的提问板书:

  (1)小红跳了多少下?

  (2)小军跳了多少下?并谈话:今天我一起来解决这两个问题。学习数学的目的就是要解决生活中遇到的实际问题,在解决问题的教学中体现数学的价值和应用价值。引导学生合作探究这两道题的口算方法时,合作交流引导得不够到位,每个小组的成员虽然都明白合作的任务是什么,但在个体的具体分工上不太明确,这样的合作交流是不充分的,在今后的教学中要不断改进。

  《两位数加两位数口算》教学反思 8

  本节课的教学内容是苏教版三年级上册“两位数加两位数的口算”。本课是在学生学习了100以内两位数加一位数、两位数加整十数基础上进行的。掌握这部分口算,不仅在实际中有用,而且是以后学习笔算的基础。通过实际教学,感触颇深,反思如下:

  一、创设情境,充分调动学生学习的积极性

  在教学时,创设适合的情境对于激发学生的学习兴趣是十分重要的,好的情境能让学生尽快地融入到教学中来。因此,课堂上由买玩具引出两位数加两位数的口算,这样一方面激发学生兴趣,另一方面让学生感知口算在日常生活中的.重要。

  二、注重交流,发挥学生的集体智慧

  交流是学生的天性,学生总愿意把自己知道的与别人一起分享。根据这一特点,在课堂上我要求学生说说自己口算的过程,充分发表自己的意见,同时培养学生的语言表达能力。

  三、口算方法多样化

  (1)44+25

  ①40+20=60,4+5=9,60+9=69

  ②先算44+20,再算64+5=69

  ③先算44+5,再算49+20=69

  ④先算25+40,再算65+4=69

  (2)25+38

  ①20+30=50,5+8=13,50+13=63注意:个位满十要向十位进一

  ②先算25+30,再算55+8=63

  ③25+8=33,33+30=63

  允许算法多样化,体现数学的个性化,让不同的学生学习不同的口算方法

  四、练习形式多样化

  多样的练习形式,使学生在掌握和巩固计算技能的同时,进一步感受数学与生活的密切联系,享受用数学解决实际问题带来的乐趣。

  《两位数加两位数口算》教学反思 9

  两位数加两位数的口算,这部分内容是在学生学习了100以内两位数加减一位数、整十数,两位数加减两位数笔算的基础上进行的。主要教学和在100以内的两位数加两位数的口算。同时,引导学生在练习中由需要进位的整十数加整十数的口算类推出相应的整百数加整百数的口算,还适当要求学生掌握两位数加两位数的估算方法。

  在探索口算方法的过程中,小朋友们既有独立思考,又有同桌讨论。在互动交流时,学生间互相引领,找出了不同的解决方法。既积极参与学习活动,又大胆发表自己的意见,取长补短,发挥学生集体的智慧,然后在相互补充中得到最佳的方案。他们的解决方法归纳起来大致有3种。

  1、笔算法。个位:4+5=9;十位:40+20=60;一共:60+9=69。

  2、拆分法。先算:44+20=64;再算:64+5=69。(拆第二个加数)

  或先算:40+25=65;再算:65+4=69。(拆第一个加数)

  3、凑整法。40+20=60,60+4=64,64+5=69;

  或:50+30=80,80-6=74,74-5=69;

  ……

  学生的`思维很是活跃,口算方法也很多样化。因为在学生的心灵深处,总有一种根深蒂固的需要:他们总爱把自己当成探索者、研究者和发现者。特别是他们在面临挑战时,都会产生要证实自己实力的愿望。因此我倡导算法多样化,在某种程度上就是要给每个孩子以更大的空间,将自己的算法个性化地表达出来。这种个性化的算法,与孩子的经验是紧密相联的。但是如果仅仅停留在这一点上,是远远不够的。试想,一个孩子如果不去思考、比较和体验其他同学的算法,而只是满足于自己的最初经验之上,他的思维能得到发展、能力能得到提高吗?从经验出发的同时,还需思考怎样让经验得到提升,这才是数学的本质所在。因此在学生呈现了算法的多样化后,还需要教师引导学生进行观察、比较,得出一个较优的算法,进而推广,这样才能得到提升!

  《两位数加两位数口算》教学反思 10

  《两位数加减两位口算》是人教版二年级下册第七单元的第一课时,这节课是在学生已经掌握了口算两位数加整十数、一位数以及两位数笔算加减法的基础上学习的。

  这节课的知识点比较容易掌握,重点是要学生掌握两位数加减两位数的口算方法。我们知道口算是一种不借助计算工具,只依靠记忆、思维和语言进行计算直接得出结果的计算方法和方式。虽然口算的结果是外显的,但口算的思维过程即是内隐的。也正因为口算过程的内隐性,所以也就有了口算方法的多样性。新课程标准里也提到:“由于学生生活背景和思考角度的不同,所使用的方法必然是多样的,教师应尊重学生的想法,鼓励学生独立思考,提倡计算方法的多样化。”因此,在这节课的设计上,我更多的注重了对学生算法多样化的教学。

  一、“23+31”教学片断(1)

  师:你是怎样计算23+31的?

  生1:先算20+30=50,再算3+1=4,最后算50+4=54.,所以23+31=54。

  生2:先算23+30=53,再算53+1=54,所以23+31=54。

  生3(按捺不住):老师,还可以这样算,先算20+31=51,再算51+3=54,所以23+31=54。

  生4:我先算30+30=60,再算60-7=53,最后算53+1=54,所以23+31=54。

  分析:倡导算法多样化是基于原来的计算教学中“计算方法单一、过于注重技能的发展、忽视学生的个性发展”等问题提出来的`,主要着眼于让学生经历探索运算方法的过程,体验算法的多样化。因此,在这节课的教学中,我适当引导学生:“你是怎样算的?”从中鼓励学生独立思考,让他们自主交流,为自己选择合适的算法,这也为不同的学生形成适合自己的学习策略提供了有效的途径。

  注重算法的多样化,但并不是像解决问题一样“一题多解”,算法越多越好,这也是很多人对算法多样化产生的一个误区,就像上面所曾显得学生算法,虽然提出的方法很多,但是不难看出,有些算法过于繁琐,或是思维层次由高到低,其实这与算法多样性目的是不相符的,因此,在学生提出多种算法后,我又加强了学生对算法优化的学习。

  二、“23+31”教学片断(2)

  师:刚才这几种算法中,你喜欢用什么方法计算?

  生1:我喜欢用第一种方法。

  生2:我喜欢用第二种方法。

  生3:我喜欢用第三种方法。

  生4:我喜欢用第四种方法。

  师小结:我们今天主要学习用第一种和第二种方法来进行口算,第三种方法在算理上和第二种是一样的。现在我们一起回顾一下这两种方法的计算过程,然后用这些方法来做下面各题。

  分析:在算法多样化的过程中,学生的自主性得到了充分发挥,思维处于活跃的状态。算法有多种多样,作为教师有责任引导学生通过比较各种算法的特点,选择合适自己的算法。在这节课中,学生之前所说的方法较多,可以看出,方法2和方法3是同一类,方法4在计算思路比较麻烦,因此我适时引导学生选择运用普遍口算方法,其实也是帮助学生优化算法,正是教师的有效引领,让学生经历了从多样化到优化的过程,学生择善而从之,这是“优化”带来的反应,是学生“选择”的结果。

  新课标指出要提倡算法的多样化,它的目的其实也就是对学生个性化学习的尊重,有利于培养学生高水平的数学思维,有利于培养学生“具体地分析具体情况”的意识。但是我认为算法多样化不是没有目的性的将所有算法堆砌在一起,因此在这节课设计中,我不仅让学生体会算法的多样化,还要引导学生优化算法,在多中选优,真正学会普遍使用的计算方法。

文章地址:www.myenblog.com/a/323259.html